液体燃料によるメタン希薄予混合気の着火制御に関する研究 環境システムコース・環境安全システム工学 36641 酒井康行

1 緒言

環境保護の観点から、発電やコジェネレーション用の定置式天然ガスエンジンにも、より一層の発電効率向上及び NOx 等の排出量削減が 求められている。こうした要求に対し、現在採 用されている火花点火希薄燃焼方式に代わり、 予混合圧縮着火燃焼方式が検討されている。

予混合圧縮着火エンジンは、火花点火燃焼限 界以下の燃料と空気の均一な混合気を吸気して、 圧縮自己着火させる仕組みのエンジンである。 希薄な予混合気を燃焼させるので燃焼温度が高 温にならず NOx の生成を抑えられる。また圧縮 比を高くできるので高効率である。一方で着火 が燃料の化学的因子に大きく依存するため直接 的な着火タイミングの制御ができず、実用化に は着火制御法の確立が必須である。着火制御法 としては、燃料濃度の増減、EGR(排気ガス再 循環)濃度の調整等が検討されている。しかし迅 速な応答、気筒間の壁面温度の差による着火の ばらつきへの対応が困難である。

迅速かつ多気筒の着火制御が可能な方法とし て、燃焼室内への液体燃料の噴霧が検討されて いる。この方法では少量の着火性の高い液体燃 料を噴霧し、その液体燃料の燃焼により燃料を 着火させる。そのため液体燃料の噴霧タイミン グの変化により、メタンの着火タイミングを制 御できると考えられる。当研究室おいて、燃焼 室内に軽油を噴霧することによるメタン希薄予 混合気の着火制御の可能性が示されている^[1]。 2 研究目的及び方針

天然ガス予混合圧縮着火エンジンの液体燃料 による着火制御法確立に向けて、液体燃料とメ タン(天然ガスモデル物質)の共存下での着火挙 動に関する知見を得ることを目的とし、以下の 方針を立てた。

定容燃焼器中のメタン希薄予混合気への液体 燃料噴霧燃焼実験及び化学素反応計算を用いて、 (1)液体燃料とメタンの共存下での着火機構 (2)メタン濃度、液体燃料の着火性が着火挙動に 与える影響

に関する知見を得ることにより、天然ガス予混 合圧縮着火エンジンの液体燃料による着火制御 法確立のための指針を示す。 3 噴霧燃焼実験

3.1 実験装置 FIA-100 及び解析方法

定容燃焼器には FUELTECH 社製 FIA-100 (Fuel Ignition Analyzer)を用いた。装置の概略 図を Fig.1 に示す。FIA-100 は内容積 0.65L の 燃焼室を備え、燃料噴射後の燃焼室内圧力を 100ms まで 0.05ms 毎に測定する。

測定した圧力から圧力上昇速度 dP/dt の時間 変化を計算したものを Fig.2 に示す。各実験条 件において、誘導期間とそれに続く低温酸化及 び高温酸化に対応すると考えられるピークが観 察された。高温酸化の開始を着火と定義し、誘 導期間、低温酸化期間、低温酸化最大圧力上昇 速度に関して考察をした。

<u>3.2 実験条件</u>

実験条件を Table1 及び Table2 に示す。各メ タン濃度条件下に軽油を噴霧する実験、オクタ ン価標準燃料(ノルマルヘプタンとイソオクタ ンの混合物)を用いて液体燃料の着火性を変化 させメタン混合気に噴霧する実験を行った。ま た比較のために空気雰囲気下での液体燃料の噴 霧燃焼実験も行った。各条件につき測定を 10 回行い、平均値を結果とした。

Table1 実験条件(メタン濃度を変化)		
温度(K)		673
圧力(MPa)		2.0
混合気組成 (vol%)	CH4	0(空気雰囲気)
		0.5, 1.0, 1.5, 2.0, 2.5(メタン雰囲気)
	02	21
	N_2	Valance
液体燃料(µI)		軽油 105
Table2 実験条件(液体燃料の着火性を変化)		
<u>温度</u> (K)		673
圧力(MPa)		2.0
混合気組成 (vol%) 	CH₄	0(空気雰囲気)
		2.0(メタン雰囲気)
	02	21
	N ₂	Valance
液体燃料(µl)		RON0 ,RON20 ,RON40
		RON60, RON80 RON100 各105

注: RON は Research Octane Number

<u>3.3 結果及び考察</u>

3.3.1 メタンの着火機構

各メタン濃度条件下に軽油を噴霧した時の圧 力上昇速度の時間変化を Fig.3 に示す。メタン 濃度の増加に伴い低温酸化最大圧力上昇速度が ほぼ一定であるのに対し、高温酸化最大圧力上 昇速度は大きくなった。一般的にメタンは低温 酸化が起こりにくいことが知られている。よっ てメタン濃度の増加に伴う高温酸化最大圧力上 昇速度の増加は、メタンが高温酸化最大圧力上 昇速度の増加は、メタンが高温酸化で燃焼する ことを示していると考えられる。以上の結果よ り、メタンは軽油の低温酸化による温度及び圧 力上昇により着火しているため、メタンの着火 タイミングは液体燃料の誘導期間及び低温酸化 期間により決まると考えられる。

Fig.3 メタン濃度と圧力上昇速度時間変化の関係 3.3.2 誘導期間及び低温酸化期間

メタン濃度と誘導期間、低温酸化期間の関係 を Fig.4 に示す。メタン濃度の増加に伴い、誘 導期間が長くなるのに対して低温酸化期間はほ ぼ一定であった。各条件下で酸素濃度は約21% で一定である。したがって誘導期間が長くなる のはメタンの影響であると考えられる。以上の 結果より、メタンは軽油の誘導期間の反応を抑 制し,その濃度の増加に伴いより大きな抑制効 果を発揮するものと考えた。

Fig.4 メタン濃度と誘導期間・低温酸化期間の関係 液体燃料の着火性と誘導期間、低温酸化期間 の関係をFig.5、Fig.6に示す。RON80、RON100 は着火しなかった。どの液体燃料でもメタン雰 囲気下では空気雰囲気下と比較して、誘導期間 及び低温酸化期間は長くなった。また着火性の 低い液体燃料ほど、空気雰囲気下と比較してメ タン雰囲気下での誘導期間及び低温酸化期間の 増加率は大きくなった。液体燃料として軽油を 用いたときには低温酸化期間は一定であったが、 これは軽油が RON0 よりも着火性がよく、低温 酸化期間の増加率が小さいため結果として現れ なかったと考えられる。以上の結果より、液体 燃料の着火性が低いほど、誘導期間及び低温酸 化の反応がメタンにより抑制される傾向が大き いことがわかった。

Fig.6 液体燃料の着火性と低温酸化期間の関係 4 計算

<u>4.1 計算目的及び方法</u>

噴霧燃焼実験での誘導期間及び低温酸化期間 の傾向、推定されたメタンの着火機構、液体燃 料の誘導期間及び低温酸化がメタンにより抑制 される機構を明らかにすることを目的として、 化学素反応計算プログラムCHEMKIN 4.0を 用い、液体燃料とメタンの均一気相反応として 等容・断熱条件下における誘導期間、低温酸化期 間、各物質濃度の時間変化を計算した。また温 度に対する感度解析を行い、着火に支配的な素 反応を割り出した。

噴霧燃焼では噴霧後に蒸発し形成された混合 気の当量比が1に近い部分から着火すると考え られる。そこで液体燃料の当量比は1として計 算を行った。液体燃料の反応機構はノルマルへ プタンとイソオクタンの混合モデル^[2]を用いた。 軽油(セタン価 59)はセタン価の近いヘプタン (セタン価 56)で代替した。その他の計算条件は Table 1 及び Table2 の実験条件と同じである。 4.2 結果及び考察

4.2.1 メタンの着火機構

ヘプタンとメタンの反応計算を行い、得られ たモル分率から計算したヘプタン及びメタンの 反応割合を温度と共に Fig.7 に示す。

ヘプタンは誘導期間、メタンは高温酸化期間 に大部分が反応している。この計算結果はヘプ タンの低温酸化により温度及び圧力が上昇する ことにより、メタンが着火することを支持して いると考えられる。

4.2.2 誘導期間及び低温酸化期間の傾向

噴霧燃焼実験で得られた傾向と同様に、メタ ン雰囲気下では誘導期間及び低温酸化期間が長 くなった。しかし空気雰囲気下と比較してメタ ン雰囲気下での誘導期間及び低温酸化期間の増

加率は、実験では着火性の低い液体燃料ほど大 きくなったのに対し、計算結果は液体燃料の着 火性によらず一定であった。計算では液体燃料 の当量比1としているが、実験では液体燃料の 拡散により当量比1未満の部分しかなく、そこ から着火していると考えられる。そのため計算 では実験と異なる傾向が現れたと考えられる。 よって液体燃料の誘導期間及び低温酸化期間は、 着火時の当量比及びメタンとの反応を考慮しな ければならないと考えられる。

<u>4.2.3 当量比による影響</u>

ヘプタンの当量比を変化させ、誘導期間及び 低温酸化期間を計算し、空気雰囲気下と比較し てメタン雰囲気下での誘導期間及び低温酸化期 間の増加率を算出した。Fig.8 に計算結果を示 す。ヘプタンの当量比が小さいほど、誘導期間 及び低温酸化期間の増加率は大きくなった。以 上の結果より、当量比が誘導期間及び低温酸化 期間に与える影響に関して推測する。メタン雰 囲気下では、メタンによって液体燃料の反応が 抑制され誘導期間及び低温酸化期間が長くなる。 その分、着火性の低い液体燃料ほど拡散により 着火時の当量比が小さく、誘導期間及び低温酸 化期間の増加率が大きくなると考えられる。

4.2.4 誘導期間の抑制機構

誘導期間内においてヘプタンは反応(1)~(4)の経路を辿り低温酸化に至る。
(1)C7H16+OH・C7H15・+H2O
(2)C7H15・+O2 C7H15OO・
(3)C7H15OO・C7H14OOH
(4)・C7H14OOH OH・(連鎖分岐)
そこで低温酸化開始に重要な C7H15OO・及び

OH・の生成量にメタンが与える影響に注目した。誘導期間内の一定時間内(ex.9.87ms)での C₇H₁₅OO・及び OH・の生成量を Fig. 9 に示す。

Fig.9 C₇H₁₅OO·及びOH·生成量とメタン濃度の関係 メタン濃度の増加に伴いC₇H₁₅OO·及びOH・ の生成量が減少している。また温度に対する感 度解析より、空気雰囲気下と比較してメタン雰 囲気下では反応(5)の温度に対する負の感度が 大きく、誘導期間の反応の抑制の原因として推 測される素反応の一つであると言える。

(5)CH₄+OH• CH₃• +H₂O

以上の結果より、メタン雰囲気下での誘導期間 の反応の抑制機構は以下のように推測できる。 メタン雰囲気下では反応(1)と(5)の OH・による 水素引き抜き反応が競合する。その結果ヘプタ ンの反応(1)~(4)の割合が減り C7H15OO・及び OH・の生成量が減少し、連鎖分岐反応に至らず 誘導期間が長くなる。またメタン濃度の増加に 伴い反応(1)と(5)の競合割合は大きくなり、 C7H15OO・及びOH・の生成量はさらに減少する ため、メタン濃度の増加に伴い誘導時間が長く なると推測される。

4.2.5 低温酸化期間の抑制機構

低温酸化期間では連鎖分岐反応が起こっている。そこで連鎖分岐反応において連鎖担体として主要な H・、OH・、HO2・の生成量に注目した。 Fig.10 に低温酸化の開始を基準として、その後 のH・、OH・、HO2・の総生成量を示す。空気雰 囲気下と比較するとメタン雰囲気下では連鎖担 体の生成速度が小さく、連鎖分岐反応が抑制さ れると考えられる。また低温酸化期間において も反応(5)の温度に対する負の感度は大きく、低 温酸化の抑制の原因として推測される素反応の 一つであると言える。以上の結果より、メタン 雰囲気下での低温酸化期間の反応の抑制機構は 以下のように推測できる。メタン雰囲気下では 反応(5)のようにメタンと連鎖担体が反応して 不活性な CH3・を生成する。そのため連鎖担体 の生成速度が小さくなり連鎖分岐反応が抑制さ れ、低温酸化期間が長くなると推測される。

Fig.10 低温酸化反応開始後のラジカル生成量 (H·,OH·,HO₂·)、液体燃料 RON100 で計算 5 総括

メタン希薄予混合気中への液体燃料噴霧燃焼 実験及び化学素反応計算により得られた、液体 燃料とメタンの着火挙動に関する知見より、天 然ガス予混合圧縮着火エンジンの液体燃料によ る着火制御法確立への指針を以下に記す。

・液体燃料の低温酸化での温度及び圧力上昇に よりメタンは着火する。液体燃料の噴霧により、 メタンの着火制御が可能であると考えられる。

・メタンの着火時期は液体燃料の誘導期間及び 低温酸化期間により決まる。誘導期間及び低温 酸化期間は、メタンの抑制効果や当量比の影響 を受け、これらを考慮して液体燃料の噴霧タイ ミングを決定することが必要となる。

・当量比による影響の少ない着火性の高い軽油 等の液体燃料が、綿密な着火制御を行う上では 適していると考えられる。

<u>6 参考文献</u>

[1]宮森可奈子 東京大学大学院修士論文 [2]三好明 第 41 回燃焼シンポジウム講演論文 集 pp.381-382(2003)